Tuto Shape3d Xflr5

Une fois le foil dessiné dans Shape3d, cliquez sur le menu Component -> Slices -> NACA profile generator :

Cette fonction permet d'ajuster un slice sur un profile NACA (ou un autre profile importé depuis un fichier .dat), mais aussi d'exporter le foil pour qu'il soit facile à analyser dans Xflr5.

4-digit NACA	Generato	or				x
Chord (c): 24.	99		Exp	ort I	mport	
Thickness	13	% of c (3.25)		Export cr	oss sectio	ns in
Camber (m):	6	% of c (1.50)	Max at (p):	40	% of c	
Tilt (t):	4	% of c (1.00)				
NACA6413						
		ОК	Cancel]		

Note que le foil doit être dessiné tel que sur la copie d'écran ci-dessus : avec le bord d'attaque vers la droite, et le bord de fuite vers la gauche.

Xflr5 est un logiciel open source qui peut être téléchargé sur le site <u>http://www.xflr5.tech/xflr5.htm</u>

L'export se compose de 20 profiles .dat et d'un fichier xml.

Ouvrez Xflr5 et cliquez sur le menu File -> New Project :

👼 xflr5 v6.53

File	Module Options ?	
	New Project	Ctrl+N
6	Open	Ctrl+O
	Load Last Project	Ctrl+Shift+O
	Insert Project	Ctrl+Shift+I
	Close the Project	Ctrl+F4
B	Save	Ctrl+S
	Save Project As	Ctrl+Shift+S
	1 C:/Users/thoma/Downloads/Foil Jet 1650_xflr5/Jet 1650.xfl	Ctrl+7
	2 C:/Users/thoma/Downloads/Go Foil Decath_xflr5/Go Foil.xfl	
	3 C:/Users/thoma/Downloads/test5.xfl	
	4 C:/Users/thoma/Downloads/Go Foil Decath_xflr5/Go Foil 2.xfl	
	5 C:/Users/thoma/Downloads/ /Go Foil HA.xfl	
	6 C:/Users/thoma/Downloads/Go Foil Thin.xfl	
	7 C:/Users/thoma/Downloads/foil decathlon.xfl	
	Exit	

Puis File -> Open, et sélectionnez tous les .dat :

niser 🔻 Nouveau	dossier				
Téléchargemei 🖈 🔨	Nom	Modifié le	Туре	Taille	
Documents 🖈	Foil Jet 1650 profile 0 x44.25.dat	14/12/2021 10:07	Fichier DAT	3 Ko	л [°]
Shape3dX 🖈	Foil Jet 1650 profile 1 x41.79.dat	14/12/2021 10:07	Fichier DAT	3 Ko	
Shape3dWeb 🖈	Foil Jet 1650_profile_2_x39.34.dat	14/12/2021 10:07	Fichier DAT	3 Ko	
Sh3dX 🖈	Foil Jet 1650_profile_3_x36.88.dat	14/12/2021 10:07	Fichier DAT	3 Ko	
Cycon *	Foil Jet 1650_profile_4_x34.43.dat	14/12/2021 10:07	Fichier DAT	3 Ko	
Cvcpp x	Foil Jet 1650_profile_5_x31.97.dat	14/12/2021 10:07	Fichier DAT	3 Ko	
C# x*	Foil Jet 1650_profile_6_x29.51.dat	14/12/2021 10:07	Fichier DAT	3 Ko	
Kerallan 🖈	Foil Jet 1650_profile_7_x27.06.dat	14/12/2021 10:07	Fichier DAT	3 Ko	
Close up ART	Foil Jet 1650_profile_8_x24.60.dat	14/12/2021 10:07	Fichier DAT	3 Ko	,
InstallX	Foil Jet 1650_profile_9_x22.15.dat	14/12/2021 10:07	Fichier DAT	3 Ko	
Production	Foil Jet 1650_profile_10_x19.69.dat	14/12/2021 10:07	Fichier DAT	3 Ko	
SamplesX	Foil Jet 1650_profile_11_x17.24.dat	14/12/2021 10:07	Fichier DAT	3 Ko	
	Foil Jet 1650_profile_12_x14.78.dat	14/12/2021 10:07	Fichier DAT	3 Ko	
OneDrive - Persona	Foil Jet 1650_profile_13_x12.32.dat	14/12/2021 10:07	Fichier DAT	3 Ko	
CePC	Foil Jet 1650_profile_14_x9.87.dat	14/12/2021 10:07	Fichier DAT	3 Ko	
Bureau	Foil Jet 1650_profile_15_x7.41.dat	14/12/2021 10:07	Fichier DAT	3 Ko	
Decuments	Foil Jet 1650_profile_16_x4.96.dat	14/12/2021 10:07	Fichier DAT	3 Ko	
Documents	Foil Jet 1650_profile_17_x2.50.dat	14/12/2021 10:07	Fichier DAT	3 Ko	
Images	Foil Jet 1650_profile_18_x1.27.dat	14/12/2021 10:07	Fichier DAT	3 Ko	
Musique	Foil Jet 1650_profile_19_x0.044.dat	14/12/2021 10:07	Fichier DAT	3 Ko	
Objets 3D					
 Téléchargements 					
Close up ART					
Disk motor					
flow5 v7.19 wir					
Foil Jet 1650 xfl					

Ensuite allez dans le menu Module -> Wing and Plane Design :

🔊 xf	lr5 v6.53					
File	Module	View	Foil	Design	Analysis	Polars
Ê	Clos	e all			Ctrl+0	
Objec	Dire	ct Foil D	esign		Ctrl+1	80
	XFoi	il Inverse	Design	n	Ctrl+3	
1	XFoi	il Direct Analysis			Ctrl+5	×
	Win	g and Pl	ane De	sign	Ctrl+6	_
	Exec	ute scrip	ot		Ctrl+X	-
	Foil Jet	1650 1650	profil profil	e 12 e 13	x1 x1	_

Puis Plane -> Import plane(s) from xml file(s) :

튨 xfl	r5 v6.53							
File	Module	View	Plane	Polars	OpPoint	Analysis	Graphs	O
) 4	D	efine a Ne	ew Plane	, i	F3	1
Ohier	t explorer		D	efine (Ad	vanced user	rs) S	Shift+F3	
objec	e explorer	_	M	lanage ob	jects	1	F7	
1	2 3	-	C	urrent Pla	ine		≻	phi
			In	nport plar	ne(s) from x	ml file(s)		

Et sélectionnez le fichier xml exporté par Shape3d :

5 Open XML File					×
\leftrightarrow \rightarrow \checkmark \uparrow	> CePC > T	éléchargements > Foil Jet 1650_xflr5		5 V	
Organiser 🔻 No	uveau dossier				E • 🔳 💡
Téléchargemei	X ^ Nom	^	Modifié le	Туре	Taille
Documents	* 📃 F	oil Jet 1650_profile_xflr.xml	14/12/2021 10:07	Fichier XML	14 Ko
Shape3dX	1				
Shape3dWeb	*				
Sh3dX	*				
, Cvcpp	* *				
	Nom du fichie	r : Foil Jet 1650_profile_xflr.xml		~	Plane XML file(*.xml) \vee
					Ouvrir Annuler

Dans le mode 3D View on peut vérifier que le foil a été importé correctement :

On peut alors directement lancer une analyse de portance depuis le menu Analysis -> Define an Analysis :

👼 xflr5 ν6.53		
File Module View Plane Polars OpPoint	Analysis Graphs Options ?	
	Define an Analysis	F6
Object explorer	Define an Analysis (advanced users)	Ctrl+F6
Object explored	Define a Stability Analysis	Shift+F6
123-4	Import analysis from xml file	
Foil Jet 1650 profile	View Log File Advanced Settings	L

On peut faire une analyse à vitesse donnée (Type 1), ou à portance donnée (Type 2). L'analyse de Type 2 est très intéressante pour voir comment se comportera un foil avec un utilisateur donné :

튨 Analysis De	finition - xfl	r5 v6.53						?	\times
Auto Analysi	s Name T2	-LLT							
Polar Type	Analysis	Inertia	Ref. dimensions	Aero data	Extra dr	ag			
O Type 1 (Fi	xed Speed)			Va	,=	36	km/h		
Type 2 (Fig	xed Lift)			C]=	0.00	•		
O Type 4 (Fi	xed aoa)			C]=	0.00	•		
O Type 5 (Be	eta range)								
						Wing	Loading =	6.100 kg)/m²
						Ro	Tip Re.sqrt ot Re.sart((Cl) = 12 (Cl) = 164	000
							Vinf.sqrt(C	l) = 9.88 k	m/h
							Save	Disca	ard

Il faut alors choisir la méthode dans l'onglet Analysis. Ring vortex fonctionne bien. On ne va pas cocher Viscous pour l'instant, ce qui nous permettra d'obtenir la portance plus rapidement.

튨 Analysis Def	finition - xf	lr5 v6.53					?	×
🗹 Auto Analysis	Name T2	-VLM2-Invis	cid					
Polar Type	Analysis	Inertia	Ref. dimensions	Aero data	Extra drag			
Analysis Met	hods							_
O LLT (Win	g only)							
O Horsesho	oe vortex (V	'LM1) (No sid	deslip)					
Ring vor	tex (VLM2)							
3D Panel	ls							
Options Viscous Tilted gen	ometry - NO	IT RECOMME	ENDED					
✓ Ignore B	ody Panels -	RECOMMEN	NDED					
						Save	Disc	ard

Dans l'onglet Inertia on saisi le poids du rider + matos, 80kg par exemple :

5 Analysis Definition - xflr5	v6.53		? ×
Auto Analysis Name T2-VL	M2-1.0kg-x10.0cm-Inviscid		
Polar Type Analysis I	Inertia Ref. dimensions	Aero data Extra dr	ag
Inertia properties			
Use plane inertia		Pla	ne Mass = 80.000 kg X_CoG = 10.000 cm Z_CoG = 0.000 cm
			Save Discard

Puis dans l'onglet Aero data if faut entrer la densité de l'eau 1000kg/m3 et sa viscosité 1.3^{e} -6 m²/s :

analysis Definition - xflr5 v6.53	? ×
Auto Analysis Name T2-VLM2-80.0kg-x10.0cm-Inviscid	d
Polar Type Analysis Inertia Ref. dimensions	Aero data Extra drag
Air Data Unit International Imperial $\rho = 1000.0 \text{ kg/m3}$ $v = 1.3e-06 \text{ m}^2/\text{s}$ From Altitude and Temperature	Ground Effect Height = 0.00 cm
	Save Discard

On clique sur le bouton Save, puis dans le mode Polar View on click sur le bouton Analyze pour lancer l'analyse :

Cette analyse calcule pour chaque inclinaison du foil (ici entre -5° et 20°) la vitesse qu'il faut pour que le foil porte 80 kg (une portance de 784 N donc). On peut aussi afficher la trainé Fx pour chaque vitesse (avec l'inclinaison qui lui correspond).

Ici on voit que pour ce foil de 1650cm² low aspect (copie grossière du Naish Jet 1650), à 5 m/s (~10 kt) il faut une inclinaison de 2°. En dessous de 6 kt il faut plus de 12°... On peut en déduire qu'on peut commencer à pomper vers 6 kt, mais que la navigation normale ne se fait qu'à partir de 10 kt en gros.

La trainée Fx est ici uniquement la trainée résiduelle due aux tourbillons, et on voit qu'elle est d'autant plus grande que la vitesse est faible et l'inclinaison grande. Elle ne fait que baisser quand la vitesse augmente, ce qui n'est pas réaliste car il n'y a pas la trainée visqueuse.

Pour ajouter la trainée visqueuse c'est un peu plus long. Il faut aller dans le menu Module -> XFoil Direct Analysis :

Puis dans le menu Analysis -> Batch Analysis :

🔊 xfl	r5 v6.53								
File	Module	View	Foil	Design	Analysis	Polars	Operating I	Points	Graphs
			4		De	fine an Ana	alysis	F6	
Objec	t explorer				Ba	ch Analysi	s	Ctrl	+F6
					lm	port Analy	sis from xml f	file	
1	2 3	-	÷		XF	oil Advance	ed Settings		
	oil Jet :	1650	profil	e 0 x4	Vie	w Log File		L	
	-oii jet	1050	profil	e 10)					

Sélectionner alors tous les profiles, et lancer les analyses de Type 1 entre -5° et 20° :

5	Multi-t	hreaded bat	ch analysis	- xflr5 v6.53				-	×
Eoi	l let 16	50 profile (×44.25						
Eoi	Foil Jet 1650 profile 10 x19.69 dv7.75 dihedral-3.572						Initialize BLs between polars		
Foi	Foil Jet 1650 profile 11 x17.24 dy9.13 dihedral-4.512						Store operating points		
Foi	Foil Jet 1650 profile 12 x14.78 dy10.66 dihedral-5.648						Ludate polar view		
Foi	Foil Jet 1650 profile 13 x12.32 dy12.35 dihedral-7.041								
Foi	Foil Jet 1650 profile 14 x9.87 dy14.26 dihedral-8.952						Max. Threads to use for the analysis: 1 /8		
Foi	Foil Jet 1650_profile_15_x7.41 dy16.42 dihedral-11.937								
Foi	Foil Jet 1650_profile_16_x4.96 dy18.92 dihedral-15.461								
Foi	Foil Jet 1650_profile_17_x2.50 dy22.03 dihedral-20.003								
Foi	Foil Jet 1650_profile_18_x1.27 dy24.12 dihedral-24.763								
Foi	Foil Jet 1650_profile_19_x0.044 dy28.05 dihedral-29.622								
Foi	Foil Jet 1650_profile_1_x41.79 dy0.15 dihedral0.138								
Foi	Jet 16	50_profile_2	_x39.34 dy0	.49 dihedral	0.035				
Foi	Jet It	50_profile_3	_x36.88 dy0	.98 dihedral	0.142				
FOI	Lat 14	50 profile_4	21 07 dy1	40 dihedral	0.309				
FOI	Lat 16	50 profile 6	20 51 dy2	20 dihedral	1.005				
Foi	let 16	50 profile 7	x27.06 dv4	27 dihedral	1 564				
Foi	let 16	50 profile 8	x24.60 dy5	33 dihedral	2 123				
Eoi	Let 16	50 profile 9	x22.15 dv6	49 dihedral	2.785				
		Re	Mach	NCrit	Actions	^			
1	×	3750	0	9					
2	×	7500	0	9					
3	×	15000	0	9	•••				
4	×	30000	0	9					
5	×	40000	0	9					
6	×	60000	0	9	•••				
7	×	80000	0	9					
8	×	100000	0	9					
9	×	130000	0	9					
10	×	160000	0	9					
-				•		•			
Po	ar type	2			_				
		● T1	OT	2	○ тз				
-									
FU	ceu II	dristuoris							
			Top transit	tion location (k/c)	1			
	Bottom transition location (x/c) 1					1			
An	alysis F	Range							
Sp	ecify:	• • • d			From Ze	ro			
	Min Max Increment				Increment				
Ale	Alpha -5.000 20.000 0.500				0.5	00			
				25.000					
Adv	anced	Settings C	lear Output	Analyze	Close				
					100				

Ca prend plusieurs minutes, et à la fin s'affichent les polaires pour tous les angles et des nombres de Reynolds entre 4000 et 3^e6.

On peut alors retourner dans le menu Module -> Wind and Plane Design, et définir une nouvelle analyse, en cochant la case Viscous cette fois-ci :

튨 Analysis D		?	×									
Auto Analy												
Polar Type	Analysis	Inertia	Ref. dimensions	Aero data	Extra drag							
Analysis Me	ethods											
O LLT (W	O LLT (Wing only)											
O Horses	O Horseshoe vortex (VLM1) (No sideslip)											
Ring vortex (VLM2)												
O 3D Par	 Options ✓ Viscous 											
Options												
Viscous												
Tilted g												
✓ Ignore												
					[Save	Disc	ard				

On obtient une portance identique à la précédente analyse, mais une trainée supérieure qui augmente à grande vitesse. Il y a donc une trainée minimum pour une inclinaison et une vitesse donnée :

Il y a donc une plage d'utilisation optimale entre 9 kt et 12 kt.

Notez qu'on peut changer l'unité de vitesse dans le menu Options -> Preferences, mais qu'il y a un petit bug qui fait que l'affichage revient toujours à m/s avec une échelle qui n'est pas toujours bonne. Il faut alors faire click droit -> Current Graph -> Define Grapgh Settings, puis Reset Graph Scales.

On peut comparer ces résultats avec un foil de 1040 cm² de plus haut aspect ration (copie grossière du Naish Jet HA 1040) :

On voit ici que l'inclinaison à 10 kt n'est pas de 2° mais 4°. On descend à 2° vers 12 kt. Le minimum de trainée est autour de 14 kt, et la plage d'utilisation optimale entre 12 kt et 16 kt.

Ces résultats ne sont pas 100% fiables, mais assez fidèles à la réalité. Nous avons fait une comparaison quantitative avec les résultats obtenus avec OpenFoam (un gros logiciel de simulation, les analyses sont très longues et demandent des gros ordis) par Décathlon et on était très proche niveau portance pour des inclinaisons allant jusqu'à 15°. L'avantage ici est que ça prends moins de 5 min tout compris pour obtenir une analyse.

Vous pouvez aussi faire des analyses de Type 1 pour obtenir l'inclinaison optimale à vitesse donnée (10-15-20 kt ici) :

Il est aussi possible de charger le stab pour avoir portance et trainée de l'ensemble.

Le logiciel Flow5 est une version avancée de Xflr5, payante, qui permet de faire la même chose, avec en plus la prise en compte de l'interaction foil/stab

(<u>https://flow5.tech/docs/flow5_doc/Analysis/VPW.html</u>), et la possibilité de faire de l'optimisation (<u>https://flow5.tech/docs/flow5_doc/MOPSO/MOPSO.html</u>).